8 (3462) 45-71-21;45-10-45; i-mikro@yandex.ru
|
Наши услуги
Предложение о сотрудничестве
Информеры
|
ZUBADAN — кондиционеры Mitsibishi Electric согреют и в сильный мороз![]() Обратите внимание на рисунок 1. Графики иллюстрируют изменение теплопроизводительности системы в зависимости от температуры наружного воздуха. Для серии ZUBADAN производительность системы практически не уменьшается до температуры -15°С, сохраняя номинальное значение. И только при более низкой температуре теплопроизводитель-ность начинает уменьшаться, но даже при этом сохраняется явное преимущество над моделями передовой инверторной серии Mr. SLIM POWER INVERTER. На графике хорошо видно, что при температуре наружного воздуха -20°С кондиционер серии ZUBADAN типоразмера 4НР (номинальная теплопроиз-водительность около 11 кВт) выделяет на 1 кВт больше тепла в помещение, чем кондиционер серии POWER INVERTER типоразмера 5НР (номинальная теплопроизводительность около 14 кВт). Еще более показательно сравнение моделей одинаковой номинальной производительности (синяя прямая на графике). ![]() Рис. 1. Сравнение теплопроизводительности систем серий ZUBADAN и POWER INVERTER Достигнуты столь выдающиеся результаты благодаря использованию спирального компрессора специальной модификации и технологии двухфазного впрыска хладагента. Гидравлический контур имеет сложную структуру: он оснащен тремя расширительными вентилями с электрическим приводом, которые обеспечивают двухступенчатое дросселирование хладагента и оптимизацию процесса впрыска хладагента в компрессор. Управляющая программа наружного блока регулирует частоту вращения инверторного компрессора, вентилятора наружного теплообменника и степень открытия расширительных вентилей с помощью приводных шаговых электродвигателей. Таким образом, прибор имеет множество степеней свободы и может точно подстроиться под специальные условия эксплуатации. Завод-изготовитель подтверждает работоспособность системы в режиме обогрева при температурах наружного воздуха до -25°С. Но заложенные в основу работы системы методы позволяют функционировать при существенно более низких температурах. Поэтому вполне вероятно, что указанное значение не является строгим ограничением. Управление режимом оттаиванияРезультаты полевых испытаний в г. Асахикава (остров Хоккайдо, Япония) ![]() На рисунке 2 приведен фрагмент записи результатов тестирования полупромышленного кондиционера Mr. SLIM серии ZUBADAN на северном японском острове Хоккайдо. В момент начала записи (16:00) температура наружного воздуха составляла -10°С, при этом температура воздуха на выходе внутреннего блока была около +50°С. Ночью похолодало, температура наружного воздуха понизилась ниже -20°С, при этом температура воздуха, выходящего из внутреннего блока, уменьшилась до +45°С. Важно отметить, что режим оттаивания наружного теплообменника (неизбежный для тепловых насосов) включается 1 раз в 2,5 часа, и его продолжительность составляет всего 3 минуты. В режиме оттаивания температура воздуха на выходе внутреннего блока соответствует комнатной температуре. В обычных системах средняя теплопроизводитель-ность оказывается на 5 - 10 % меньше номинального значения, которое дается без учета режима оттаивания. В системах серии ZUBADAN оттаивание несущественно уменьшает среднюю те-плопроизводительность. На графике видно, что даже ночью при минимальной температуре снаружи - кондиционер поддерживает в помещении температуру 22 - 23°С. Другим важным параметром теплового насоса является время выхода на номинальную производительность после первого включения или после окончания очередного режима оттаивания. Чем меньше инерционность и короче переходный процесс, тем выше средняя теплопроизводительность системы и меньше отклонение температуры в помещении от целевого значения. На рисунке 3 показано сравнение системы ZUBADAN с обычной инверторной системой. Температура воздуха, выходящего из внутреннего блока системы ZUBADAN, достигает значения +45°С вдвое быстрее (10 минут), чем ин-верторная система (19 минут). А после выхода на стабильный режим температура воздуха на выходе системы ZUBADAN достигнет значения +50°С (при температуре наружного воздуха +2°С). ![]() Рис. 3. Время выхода систем на номинальную теплопроизво-дительность Как это работает Традиционным решением задачи увеличения теплопроизводительности системы при низких температурах наружного воздуха является впрыск газообразного хладагента в компрессор. Для этого между конденсатором и испарителем в точке промежуточного давления устанавливается сепаратор «жидкость-газ», верхний вывод которого соединяется со штуцером впрыска в компрессор. В результате количество газообразного хладагента, циркулирующего через конденсатор, увеличивается, и растет теплопроизводительность системы. Однако такие системы отличаются нестабильной работой. Объем впрыска колеблется в зависимости от давления в сепараторе и производительности компрессора, а уровень заполнения отделителя меняется в очень широких пределах: от минимального уровня до полного заполнения жидким хладагентом. ![]() Рис. 4. Схема гидравлического контура системы ZUBADAN В системах ZUBA-DAN применяется метод парожидкостной ин-жекции. В режиме обогрева давление жидкого хладагента, выходящего из конденсатора, роль которого выполняет теплообменник внутреннего блока, немного уменьшается с помощью расширительного вентиля LEV B. Парожидкостная смесь (точка 3 на рисунке 4) поступает в ресивер «Power Receiver». Внутри ресивера проходит линия всасывания, и осуществляется обмен теплотой с газообразным хладагентом низкого давления. За счет этого температура смеси снова понижается (точка 4 на рисунке 4), и жидкость поступает на выход ресивера. Далее некоторое количество жидкого хладагента ответвляется через расширительны й вентиль LEV C в цепь инжекции. Часть жидкости испаряется, а температура образующейся смеси понижается. За счет этого охлаждается основной поток жидкого хладагента, проходящий через теплообменник HIC (точка 5 на рисунке 4). После дросселирования с помощью расширительного вентиля LEV A (точка 6 на рисунке 4) смесь жидкого хладагента и образовавшегося в процессе понижения давления пара поступает в испаритель, то есть теплообменник наружного блока. За счет низкой температуры испарения тепло передается от наружного воздуха к хладагенту, и жидкая фаза в смеси полностью испаряется (точка 7 на рисунке 4). Проходя через трубу низкого давления в ресивере «Power Receiver», перегрев газообразного хладагента увеличивается, и он поступает в компрессор. Кроме того, этот ресивер сглаживает колебания промежуточного давления при флуктуациях внешней тепловой нагрузки, а также гарантирует подачу на расширительный вентиль цепи инжекции только жидкого хладагента, что стабилизирует работу этой цепи. Часть жидкого хладагента, ответвленная от основного потока в цепь инжекции, превращается в парожидкостную смесь среднего давления. При этом температура смеси понижается, и она подается через специальный штуцер инжекции в компрессор. В верхней неподвижной спирали компрессора предусмотрены отверстия для впрыска хладагента на промежуточном этапе сжатия (рисунок 5). ![]() Рис. 5. Структура компрессора с каналом инжекции Расширительный вентиль LEV B задает величину переохлаждения хладагента в конденсаторе. Вентиль LEV A определяет перегрев в испарителе, а LEV C поддерживает температуру перегретого пара на выходе компрессора около 90°С. Это происходит за счет того, что, попадая через цепи инжекции в замкнутую область между спиралями компрессора, двухфазная смесь перемешивается с газообразным горячим хладагентом, и жидкость из смеси полностью испаряется. Температура газа понижается. Регулируя состав парожидкостной смеси, можно контролировать температуру нагнетания компрессора. Далее мы увидим, что это позволяет не только избежать перегрева компрессора, но и оптимизировать теплопроизводительность конденсатора. Эффект от инжекции газообразного хладагента заключается в следующем. Поток хладагента через компрессор складывается из хладагента, поступающего через линию всасывания, и хладагента, проходящего через цепь инжекции. При низкой температуре наружного воздуха инжекция увеличивает общий расход. В результате больше горячего пара поступает в конденсатор (теплообменник внутреннего блока), и его тепловая мощность увеличивается. Кроме того, инжекция газа увеличивает эффективность всего холодильного контура. Дело в том, что обычно на вход испарителя после дросселирующего устройства поступает парожид-костная смесь. При этом входящий газ бесполезно проходит по испарителю, практически не внося вклад в холодопроиз-водительность. Далее он поступает в компрессор, который затрачивает энергию на его сжатие совместно с газом, образовавшимся в испарителе. При инжекции газа в компрессор газообразный хладагент отбирается в цепь инжекции при промежуточном давлении. И компрессор затрачивает меньшую энергию на сжатие этого газа, потому что сжатие до давления конденсации происходит от уровня промежуточного давления, а не от давления испарения. Данный эффект проявляется как в режиме обогрева, так и в режиме охлаждения. Рассмотрим подробнее взаимосвязь между расходом хладагента, проходящего через цепь инжекции, и тепловой мощностью конденсатора. С одной стороны, с увеличением количества инжектируемого газа расход хладагента через конденсатор увеличивается, но при этом температура перегрева паров на входе в конденсатор уменьшается. На рисунке 6 показано распределение температуры вдоль поверхности теплообменника при одинаковой температуре конденсации, но при разной температуре входящего газа. Существенные различия наблюдаются на участке, где хладагент находится в состоянии перегретого газа. Конечно, теплообмен на горизонтальном участке конденсации доминирует, но и участок перегретого газа нельзя сбрасывать со счетов, поскольку он вносит 20-30 % в теплопроизводительность конденсатора. ![]() Рис. 6. Распределение температуры конденсатора ![]() Рис. 7. Теплопроизводительность системы ZUBADAN Наличие двух соизмеримых и противоположно направленных факторов приводит к тому, что теплопроизводительность системы достигает максимума при строго определенном расходе инжектируемого газа. Таким образом, алгоритм управления цепью инжекции может быть оптимизирован с целью достижения максимальной теплопроизводительности, например, при пуске системы в холодном помещении. Но на некоторых этапах работы теплового насоса требуется не столько производительность, сколько экономичная работа. Например, после прогрева помещения максимальная мощность больше не требуется, и предпочтительнее энергоэффективная работа системы. Поэтому на данном этапе расход инжектируемого хладагента уменьшается, что влечет за собой повышение температуры на входе конденсатора и уменьшение его производительности. Но в этом случае ограничение расхода в цепи инжекции сокращает количество газа, которое сжимает компрессор. Потребляемая мощность уменьшается, а энергоэффективность увеличивается. Рисунок 7 иллюстрирует зависимость производительности и экономичности системы от инжекции. В зависимости от условий эксплуатации система автоматически выбирает параметр оптимизации, что обеспечивает комфортный обогрев помещения и сокращение эксплуатационных расходов. Есть еще один режим, в котором важна максимальная производительность системы, - это режим оттаивания наружного теплообменника (испарителя). В процессе работы в режиме обогрева на нем образуется иней, который ухудшает процесс испарения хладагента и теплообмен с наружным воздухом. Для оттаивания система переключается с помощью 4-хходового клапана в режим охлаждения. При этом из внутреннего блока перестает выходить теплый воздух, и обогрев помещение приостанавливается. Поэтому желательно сократить продолжительность этого «технологического» режима. Для этого одновременно с переключением 4-хходового клапана устанавливается приоритет максимальной производительности системы. Расширительный клапан LEV C в цепи инжекции открывается, увеличивая расход парожидкостной смеси. Основные следствия увеличения инжекции в режиме оттаивания аналогичны выводам, приведенным выше для режима обогрева. Производительность наружного теплообменника становится максимальной, и он быстро очищается от инея и льда. За время оттаивания температура в помещении не успевает ощутимо понизиться. Кроме того, после окончания режима оттаивания система снова включается с приоритетом теплопроизводительности и только после достижения целевой температуры выходит на экономичный режим. Таким образом, оттаивание наружного теплообменника происходит интенсивно, и система быстро возвращается к нормальному обогреву. А можно ли увеличить интервал между оттаиваниями, то есть замедлить процесс образования инея и льда на теплообменнике? В системах ZUBADAN применяются две технологии. Первая - это гидрофильное покрытие ребер теплообменников. Оно позволяет избежать образования «мостиков» льда между соседними ребрами и последующей полной блокировки теплообменника. Вторая технология заложена в алгоритмы управления - интервал между режимами оттаивания изменяется в зависимости от температуры наружного теплообменника (температуры испарения) и температуры наружного воздуха. Предусмотрены «короткий» и «длинный» циклы оттаивания, сочетание которых позволяет оптимизировать процесс удаления инея с теплообменника наружного блока. За последние два года системы ZUBADAN успешно прошли полевые испытания в северных районах Японии и в странах Скандинавии. И, наконец, в конце осени 2007 года компания Mitsubishi Electric приступила к серийному производству данного оборудования для европейского рынка, и в том числе для России. Дата последнего обновления: 12.02.2008 Дата создания: 12.02.2008 Источник www.airs.ru Если у вас возникла потребность в наших услугах, обращайтесь и мы обязательно поможем 8(3462) 45-71-21 г.Сургут Если у вас возникла потребность в наших услугах, обращайтесь и мы обязательно поможем 8(3462) 45-71-21 г.Сургут |
Новости
Онлайн расчет кондиционера
Онлайн расчет окупаемости роторного рекуператора
Онлайн расчет калорифера
Онлайн расчет скорости воздуха
|